supa_mdx_lint/utils/
regex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#![allow(dead_code)]

use std::collections::HashSet;

use bon::builder;
use regex_syntax::ast::{
    parse::Parser, Ast, ClassPerlKind, ClassSet, ClassSetItem, Concat, RepetitionKind,
};

use crate::utils::char_tree::CharNode;

/// Expand a regex pattern into a list of strings.
///
/// Because of the nature of regex and wanting to return (a) a finite result
/// in (b) some reasonable amount of time, the returned list of strings is _not_
/// exhaustive. Even for a valid and theoretically finite regex pattern, None
/// may be returned if a performant expansion is too difficult.
///
/// ```ignore
/// let result = expand_regex(r"test(s|ed)?");
/// assert_eq!(result, Some(vec!["test", "tests", "tested"]));
/// ```
#[builder]
pub fn expand_regex(
    regex: &str,
    /// Whether to trim non-alphabetic characters from beginning and end of
    /// expanded string. Defaults to true.
    trim_non_alphabetic: Option<bool>,
) -> Option<Vec<String>> {
    let trim_non_alphabetic = trim_non_alphabetic.unwrap_or(true);

    let ast = Parser::new().parse(regex).ok()?;
    expand_ast(&ast, trim_non_alphabetic)
}

fn expand_ast(ast: &Ast, trim_non_alphabetic: bool) -> Option<Vec<String>> {
    #[derive(Debug)]
    enum NextNode {
        Single(CharNode),
        Multiple(Vec<CharNode>),
    }

    fn expand_ast_internal(ast: &Ast, char_tree: &mut Option<CharNode>) -> Option<NextNode> {
        match ast {
            Ast::Assertion(_) => Some(NextNode::Single(
                char_tree.clone().unwrap_or_else(CharNode::initiate),
            )),
            Ast::Literal(literal) => match char_tree {
                Some(ref mut node) => {
                    let new_node = node.append(literal.c);
                    Some(NextNode::Single(new_node))
                }
                None => {
                    let new_tree = char_tree.insert(CharNode::initiate());
                    let new_node = new_tree.append(literal.c);
                    Some(NextNode::Single(new_node))
                }
            },
            Ast::ClassBracketed(class_bracketed) if !class_bracketed.negated => {
                let new_nodes = expand_class_set(char_tree, &class_bracketed.kind);
                new_nodes.map(NextNode::Multiple)
            }
            Ast::Repetition(repetition)
                if matches!(repetition.op.kind, RepetitionKind::ZeroOrOne) =>
            {
                let mut tree = char_tree.get_or_insert_with(CharNode::initiate).clone();
                if !tree.is_root() {
                    tree.mark_finished_word();
                }

                let mut next_nodes = vec![tree.clone()];

                let alt_branch = expand_ast_internal(repetition.ast.as_ref(), char_tree);
                match alt_branch {
                    Some(NextNode::Single(node)) if node != tree => {
                        next_nodes.push(node);
                    }
                    Some(NextNode::Multiple(nodes)) => {
                        for node in nodes.into_iter() {
                            if node != tree {
                                next_nodes.push(node);
                            }
                        }
                    }
                    _ => {}
                }

                Some(NextNode::Multiple(next_nodes))
            }
            Ast::Group(group) => expand_ast_internal(group.ast.as_ref(), char_tree),
            Ast::Alternation(alternation) => {
                let mut next = Vec::new();

                for ast in alternation.asts.iter() {
                    match expand_ast_internal(ast, char_tree) {
                        Some(NextNode::Single(node)) => next.push(node),
                        Some(NextNode::Multiple(nodes)) => next.extend(nodes),
                        _ => {}
                    }
                }

                Some(NextNode::Multiple(next))
            }
            Ast::Concat(concat) => expand_concat(char_tree, concat),
            Ast::ClassPerl(perl_class)
                if perl_class.kind == ClassPerlKind::Space && !perl_class.negated =>
            {
                Some(NextNode::Single(
                    char_tree.clone().unwrap_or_else(CharNode::initiate),
                ))
            }
            _ => {
                // Too complex to list all the possibilities, just abort
                if let Some(ref mut node) = char_tree {
                    node.abort();
                }
                None
            }
        }
    }

    fn expand_concat(char_tree: &mut Option<CharNode>, concat: &Concat) -> Option<NextNode> {
        let tree = char_tree.get_or_insert_with(CharNode::initiate).clone();
        let mut next_node = Some(NextNode::Single(tree));

        for ast in concat.asts.iter() {
            match next_node {
                Some(NextNode::Single(node)) => {
                    let mut node = Some(node);
                    next_node = expand_ast_internal(ast, &mut node);
                }
                Some(NextNode::Multiple(nodes)) => {
                    let mut next = Vec::new();

                    nodes.into_iter().for_each(|node| {
                        let mut node = Some(node);
                        match expand_ast_internal(ast, &mut node) {
                            Some(NextNode::Single(node)) => next.push(node),
                            Some(NextNode::Multiple(nodes)) => next.extend(nodes),
                            _ => {}
                        }
                    });

                    next_node = Some(NextNode::Multiple(next));
                }
                _ => {}
            }
        }

        next_node
    }

    fn expand_class_set(
        char_tree: &mut Option<CharNode>,
        class_set: &ClassSet,
    ) -> Option<Vec<CharNode>> {
        let mut result = None::<Vec<CharNode>>;

        match class_set {
            ClassSet::Item(ClassSetItem::Literal(literal)) => {
                let tree = char_tree.get_or_insert_with(CharNode::initiate);
                let new_node = tree.append(literal.c);
                result.get_or_insert_with(Vec::new).push(new_node);
            }
            ClassSet::Item(ClassSetItem::Union(union)) => {
                for item in union.items.iter() {
                    let class_set = ClassSet::Item(item.clone());
                    if let Some(new_nodes) = expand_class_set(char_tree, &class_set) {
                        result.get_or_insert_with(Vec::new).extend(new_nodes);
                    }
                }
            }
            _ => {
                // Too complex to list all the possibilities, just abort
                if let Some(ref mut node) = char_tree {
                    node.abort();
                }
            }
        }

        result
    }

    let mut char_tree = None::<CharNode>;
    expand_ast_internal(ast, &mut char_tree);
    char_tree.map(|tree| {
        tree.collect()
            .into_iter()
            .map(|s| {
                if trim_non_alphabetic {
                    s.trim_matches(|c: char| !c.is_alphabetic()).to_string()
                } else {
                    s
                }
            })
            .collect::<HashSet<_>>()
            .into_iter()
            .collect::<Vec<_>>()
    })
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_expand_regex_blank_returns_none() {
        let result = expand_regex().regex("").call();
        assert_eq!(result, None);
    }

    #[test]
    fn test_expand_regex_literal_into_itself() {
        let result = expand_regex().regex("test").call();
        assert_eq!(result, Some(vec!["test".to_string()]));
    }

    #[test]
    fn test_expand_regex_alternates() {
        let mut result = expand_regex().regex("test(s|ed)").call().unwrap();
        result.sort();
        assert_eq!(result, vec!["tested".to_string(), "tests".to_string()]);
    }

    #[test]
    fn test_expand_regex_optional() {
        let mut result = expand_regex().regex("tests?").call().unwrap();
        result.sort();
        assert_eq!(result, vec!["test".to_string(), "tests".to_string()]);
    }

    #[test]
    fn test_expand_regex_alternates_optional() {
        let mut result = expand_regex().regex("test(s|ed)?").call().unwrap();
        result.sort();
        assert_eq!(
            result,
            vec![
                "test".to_string(),
                "tested".to_string(),
                "tests".to_string(),
            ]
        );
    }

    #[test]
    fn test_expand_regex_alternates_class_set() {
        let mut result = expand_regex().regex("[Aa]pple").call().unwrap();
        result.sort();
        assert_eq!(result, vec!["Apple".to_string(), "apple".to_string()]);
    }

    #[test]
    fn text_expand_regex_initial_optional() {
        let mut result = expand_regex().regex("(pre)?determine").call().unwrap();
        result.sort();
        assert_eq!(
            result,
            vec!["determine".to_string(), "predetermine".to_string()]
        )
    }

    #[test]
    fn test_expand_regex_aborted_case() {
        let result = expand_regex().regex("[^Aa]pple").call().unwrap();
        assert_eq!(result, Vec::<String>::new());

        let result = expand_regex().regex("a[^Aa]pple").call().unwrap();
        assert_eq!(result, Vec::<String>::new());
    }

    #[test]
    fn test_expand_regex_trim_non_alphabetic() {
        let result = expand_regex().regex(" test ").call();
        assert_eq!(result, Some(vec!["test".to_string()]));

        let result = expand_regex().regex("!test!").call();
        assert_eq!(result, Some(vec!["test".to_string()]));

        let result = expand_regex()
            .regex("!test!")
            .trim_non_alphabetic(false)
            .call();
        assert_eq!(result, Some(vec!["!test!".to_string()]));
    }

    #[test]
    fn test_expand_regex_deduplication() {
        let result = expand_regex().regex("test|test").call().unwrap();
        assert_eq!(result, vec!["test".to_string()]);
    }

    #[test]
    fn test_expand_regex_with_assertions() {
        let result = expand_regex().regex("^test$").call().unwrap();
        assert_eq!(result, vec!["test"]);
    }

    #[test]
    fn test_expand_regex_with_perl_classes() {
        let result = expand_regex().regex("\\stest\\s").call().unwrap();
        assert_eq!(result, vec!["test"]);
    }
}